2 research outputs found

    Mechanochemical Defluorinative Arylation of Trifluoroacetamides : An Entry to Aromatic Amides

    Get PDF
    The amide bond is prominent in natural and synthetic organic molecules endowed with activity in various fields. Among a wide array of amide synthetic methods, substitution on a pre-existing (O)C-N moiety is an underexplored strategy for the synthesis of amides. In this work, we disclose a new protocol for the defluorinative arylation of aliphatic and aromatic trifluoroacetamides yielding aromatic amides. The mechanochemically induced reaction of either arylboronic acids, trimethoxyphenylsilanes, diaryliodonium salts, or dimethyl(phenyl)sulfonium salts with trifluoroacetamides affords substituted aromatic amides in good to excellent yields. These nickel-catalyzed reactions are enabled by C-CF3 bond activation using Dy2O3 as an additive. The current protocol provides versatile and scalable routes for accessing a wide variety of substituted aromatic amides. Moreover, the protocol described in this work overcomes the drawbacks and limitations in the previously reported methods.Peer reviewe

    Rh<sub>2</sub>(II)-Catalyzed Selective C(sp<sup>3</sup>)–H Bond Electrophilic Amination of Aryl Azide-Tethered 1,3-Dicarbonyl Compounds

    No full text
    Herein, we report the accomplishment of Rh2(II)-catalyzed intramolecular amination of aryl azide-tethered 1,3-dicarbonyls to access privileged heterocyclic scaffolds with exclusive diastereoselectivity under simple reaction conditions. This method also allows an unconventional direct α-amination at electron-deficient C(sp3)–H bonds of aryl azide-tethered 1,3-diketones to afford fused 2-azatricyclo[4.4.0.02,8]decanones and 2,2-disubstituted indolines, which are present in several biologically active alkaloids. Kinetic isotope experiments revealed that the nucleophilic addition of enol π-bonds on the transient electrophilic rhodium-nitrenoid intermediate enables C–N bond formation
    corecore